
University of Groningen Multivariable Analysis H. Jardón-Kojakhmetov

Resit Exam
12/04/2023, 8:30 am - 10:30 am

Instructions:

• Prepare your solutions in an ordered, clear and clean way. Avoid delivering solutions with scratches.

• Write your name and student number in all pages of your solutions.

• Clearly indicate each exercise and the corresponding answer. Provide your solutions with as much detail as possible.

• Use different pieces of paper for solutions of different exercises.

• Read first the whole exam, and make a strategy for which exercises you attempt first. Start with those you feel
comfortable with!

Exercise 1: (0.5 + 0.5 + 0.5 points) Suppose that a surface z = z(x, y) is implicitly defined by F (x, y, z) = 0. Assume
that (a, b, c) ∈ R3 is a point in the surface, that is F (a, b, c) = 0.

a) Compute the direction along which the function z(x, y) grows the fastest from the point (x0, y0) = (a, b).

b) What is, geometrically, the set C =
{
(x, y, z) ∈ R3 | z(x, y) = c

}
?

c) Find the equation of the tangent line to C at the point (a, b).

Solution:

a) According to Lecture 1, the direction of fastest change is given by the vector of directional derivatives, or
the gradient. That is

∇F =



∂F

∂x
(a, b, c)

∂F

∂y
(a, b, c)

∂F

∂z
(a, b, c)

 , (1)

which is the gradient evaluated at the point of interest.

b) The set C is a one-dimensional (level) curve on the surface passing through (a, b, c).

c) The curve C is implicitly given by F (x, y, c) = 0. Therefore, we know from the lecture that the tangent line

to C at (a, b, c) is given by ker


∂F

∂x
(a, b, c)

∂F

∂y
(a, b, c)

, which leads to a line given by

∂F

∂x
(a, b, c)x+

∂F

∂y
(a, b, c)y = 0. (2)

Exercise 2: (1 point) Let f : R2 → R be defined by f(x, y) =

∫ h2(x,y)

h1(x,y)

g(t)dt, where hi : R2 → R, i = 1, 2, are

differentiable functions and g : R → R is continuous. Is f differentiable for all (x, y) ∈ R2? (Justify your answer)

Solution: By the fundamental theorem of calculus (keep in mind that the limits are functions) we have

∂f

∂x
= g(h2(x, y))

∂h2

∂x
− g(h1(x, y))

∂h1

∂x
∂f

∂y
= g(h2(x, y))

∂h2

∂y
− g(h1(x, y))

∂h1

∂y
.

(3)

Since hi is differentiable, their derivatives exist and are continuous. Since g is continuous and the product of
continuous functions are continuous, we conclude that the partial derivatives of f are continuous, which implies
differentiability of f in the whole plane.
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Exercise 3: (1.5 points) Let B =
{
(x, y, z) ∈ R3 |x2 + y2 + z2 ≤ 1, x, y, z ≥ 0

}
. Compute

∫
B
(x+ y + z)|dxdy dz|.

Hint: you may want to use spherical coordinates.

Solution:

Spherical coordinates can be given by

S : (r, θ, ϕ) 7→ (r cos θ cosϕ, r sin θ cosϕ, r sinϕ) = (x, y, z) (4)

and according to slide 15 of lecture 9 det |DS| = r2 cosϕ. To parametrize B we let r =∈ [0, 1] and θ ∈ [0, π/2],
ϕ ∈ [0, π/2]. In this way, and using slide 13 of lecture 9 and Fubini’s theorem, we have:∫

B
(x+ y + z)|dxdydz| =

∫ π/2

0

∫ π/2

0

∫ 1

0

(r cos θ cosϕ+ r sin θ cosϕ+ r sinϕ)r2 cosϕdrdθdϕ

=

∫ π/2

0

∫ π/2

0

∫ 1

0

r3(cos θ cos2 ϕ+ sin θ sin2 ϕ+ sinϕ cosϕ)drdθdϕ

=
1

4

∫ π/2

0

∫ π/2

0

(cos θ cos2 ϕ+ sin θ sin2 ϕ+ sinϕ cosϕ)dθdϕ

=
1

4

∫ π/2

0

(cos2 ϕ+ sin2 ϕ+
π

2
sinϕ cosϕ)dϕ

=
1

4

(
π

4
+

π

4
+

π

2
· 1
2

)
=

3π

16
.

(5)

Exercise 4: (1 + 0.25 + 0.25 points) Consider the ODE x′′ − 3x′ + 2x = sin(e−t).

a) Find the general solution of the given ODE.

b) Determine at least one initial condition for which lim
t→∞

x(t) = +∞.

c) Determine at least one initial condition for which lim
t→∞

x(t) = −∞.

Solution:

a) The characteristic polynomial for the homogeneous part is

s2 − 3s+ 2 = (s− 1)(s− 2), (6)

meaning that the corresponding eigenvalues are λ1 = 1, λ2 = 2. By making the substitution y = (y1, y2) =
(x, x′) we obtain:

y′ =

[
0 1
−2 3

]
︸ ︷︷ ︸

A

y +

[
0

sin(e−t).

]
︸ ︷︷ ︸

b(t)

(7)

Next we find the eigenvectors u, v of A associated to λ1 and λ2 respectively. We have for λ1 = 1:[
0 1
−2 3

] [
u1

u2

]
=

[
u1

u2

]
[

u2

−2u1 + 3u2

]
=

[
u1

u2

] (8)

leading to the eigenvector u =

[
1
1

]
. On the other hand, for λ2 = 2 we have:

[
0 1
−2 3

] [
v1
v2

]
= 2

[
v1
v2

]
[

v2
−2v1 + 3v2

]
=

[
2v1
2v2

] (9)
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leading to the eigenvector v =

[
1
2

]
. So, the homogeneous solution reads as

yh = c1e
t

[
1
1

]
+ c2e

2t

[
1
2

]
=

[
et e2t

et 2e2t

]
︸ ︷︷ ︸

M(t)

[
c1
c2

]
. (10)

It follows that M(t)−1 =
1

e3t

[
2e2t −e2t

−et et

]
=

[
2e−t −e−t

−e−2t e−2t

]
. So M(t)−1b(t) =

[
−e−t sin(e−t)
e−2t sin(e−t)

]
. Let

u = e−t, then ∫ t

0

−e−s sin(e−s)ds = − cos(e−s)|t0 = − cos(e−t) + cos(1) (11)

and ∫ t

0

e−2s sin(e−s)ds = −
∫ e−t

1

u sin(u)du = −(sin(u)− u cos(u))
∣∣∣e−t

1

= −(sin(e−t)− e−t cos(e−t)) + (sin(1)− cos(1))

(12)

Since we only need a particular solution, we can disregard the constant terms. Hence:

yp(t) =

[
− cos(e−t)

−(sin(e−t)− e−t cos(e−t))

]
(13)

and so the general solution reads as

y(t) =

[
et e2t

et 2e2t

]([
c1
c2

]
+

[
− cos(e−t)

−(sin(e−t)− e−t cos(e−t))

])
(14)

From the last equation we can extract that

x(t) = c1e
t + c2e

2t − et cos(e−t)− e2t sin(e−t) + et cos(e−t) = c1e
t + c2e

2t − e2t sin(e−t). (15)

It is convenient for the next two items to write:

x(t) = c1e
t + e2t(c2 − sin(e−t)). (16)

b) If c1 > 0 and c2 > 0 then lim
t→∞

x(t) = ∞

c) If c1 < 0 and c2 < 0 then lim
t→∞

x(t) = −∞

Exercise 5: (0.5 + 0.5 points) Consider the map A : R2 → R3 defined by A(x, y) = (x2 ln(xy), ex+y, x3y).

1. Compute the Jacobian matrix DA(1, 1).

2. Suppose that B : R3 → R3 is a map whose Jacobian matrix at (0, 1, 1) is DB(0, 1, 1) =

[
−1 0 1
0 2 2

]
. Compute

D(B ◦A)(1, 1).

Solution:

1.

DA(x, y) =


2x ln(xy) + x

x2

y

ex+y ex+y

3x2y x3

 , (17)
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therefore

DA(1, 1) =


1 1

e2 e2

3 1

 , (18)

2. Correcting the map A to A(x, y) = (x2 ln(xy), ex−y, x3y) we have that

DA(x, y) =


2x ln(xy) + x

x2

y

ex−y −ex−y

3x2y x3

 , (19)

and so

DA(1, 1) =


1 1

1 −1

3 1

 . (20)

So, applying chain rule we have

D(B ◦A)(1, 1) = DB(A(1, 1))DA(1, 1) =

[
−1 0 1
0 2 2

]
1 1

1 −1

3 1

 =

[
2 0
8 0

]
(21)

Exercise 6: (1.5 points) Let S be the part of the surface of equation z = sinxy + 2 where

x2 + y2 ≤ 1 and x ≥ 0,

oriented by the upward-pointing normal. Let F⃗ =

 0
0

x+ y

. What is the flux of F⃗ through S ?

Solution: Since the provided domain is a (part of a) disk, it is convenient to use polar coordinates to parameterise
it. Let U = (r cos θ, r sin θ) with r ≤ 1 and θ ∈ [−π/2 → π/2]. Then γ : (r, θ) 7→ (r cos θ, r sin θ, sin(r2 sin θ cos θ)+
2) parameterizes S. To check if this is an orientation preserving, first notice that the normal to F (x, y, z) =

z − sinxy − 2 is given bu n =

−y cos(xy)
−x cos(xy)

1

 =

−r sin θ cos(r2 sin θ cos θ)
−r cos θ cos(r2 sin θ cos θ)

1

. We also have

D1γ =

 cos θ
sin θ

2r sin θ cos θ sin(r2 sin θ cos θ)

 (22)

and

D2γ =

 −r sin θ
r cos θ

r2 cos(r2 sin θ cos θ)(cos2 θ − sin2 θ).

 (23)

For simplicity let u = cos(r2 sin θ cos θ) and v = cos(r2 sin θ cos θ), so we now compute

det

−ur sin θ cos θ −r sin θ
−ur cos θ sin θ r cos θ

1 2rv sin θ cos θ ur2(cos2 θ − sin2 θ)

 = 1(r cos2 θ + r sin2 θ)

− 2rv sin θ cos θ(−ur2 sin θ cos θ − ur2 sin θ cos θ)

+ ur2(cos2 θ − sin2 θ)(−ur sin2 θ + ur cos2 θ)

= r + u2r3(cos2 θ − sin2 θ)2 ≥ 0.

(24)
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Therefore, the proposed parametrization is indeed orientation preserving. Finally, we can compute the flux as:

∫
S

ΦF⃗ =

∫ 1

0

∫ π/2

−π/2

det

 0 cos θ −r sin θ
0 sin θ r cos θ

(r cos θ + r sin θ) 2rv sin θ cos θ ur2(cos2 θ − sin2 θ)

dθdr

=

∫ 1

0

∫ π/2

−π/2

r2(cos θ + sin θ)dθdr = 2

∫ 1

0

r2dr =
2

3
.

(25)

Exercise 7: (1 point) Let f : Rn → Rn be a smooth map given by f(x1, . . . , xn) = (y1, . . . , yn). Let ϕ = dy1 ∧ · · · ∧ dyn.
Show that

f∗ϕ = det(Df)dx1 ∧ · · · ∧ dxn.

Solution: We have:

f∗(dy1 ∧ · · · ∧ dyn) = f∗dy1 ∧ · · · f∗dyn = df1 ∧ · · · ∧ dfn, (26)

where

dfi =

n∑
k=1

∂fi
∂xk

dxk. (27)

These two equations lead to the result using slide 13 of lecture 14. Arriving to the previous expression(s) is enough
to get full points, and it is not necessary to show the previous sentence.

Exercise 8: (2 bonus points) Let S be a closed surface in R3 and V the solid that it encloses. Let S be oriented with

the outward-pointing normal. Prove that vol3 V =
1

3

∫
S

(xdydz + ydzdx+ zdxdy).

Page 5 of 5


